

Amyuni PDF Converter

Version 1.5

User’s Manual

AMYUNI Consultants
www.amyuni.com

 2

Contents

Amyuni PDF Converter .. 1
Legal Information.. 4

Acknowledgments .. 4
What’s new in version 1.5 .. 5

Installation ... 6
Automatic Installation Procedure .. 6
Manual Installation Procedure ... 6

Usage ... 7
Windows NT®... 7
Windows® 3.1, 95 or 98 .. 8

Configuration... 9
Property Page 1: Configuration ... 10
Property Page 2: Advanced Options .. 11
Property Page 3: Image Compression .. 12
Property Page 4: Destination .. 13

Using the interface DLL (PDFIntf.dll standard edition).. 14
VB/VBA declarations .. 15
Sample VB code .. 15
C++ declarations ... 15
Sample C/C++ code... 16
Delphi declarations ... 17

Using the interface DLL (PDFIntf.dll developer edition) .. 18
VB/VBA declarations .. 19
Sample VB code .. 19
C++ declarations ... 20
Sample C/C++ code... 20
Delphi declarations ... 22

 3

Appendix A: PDF Converter events format ... 23
Windows 95/98 .. 24
Windows NT.. 24
Sample message handling function... 24

Appendix B: Adding bookmarks to the PDF document ... 26
VB sample for inserting bookmarks... 27

Appendix C: Using the Amyuni Printer Drivers with Visual FoxPro 6 28
Using the ActiveX interface from within FoxPro ... 29
Using the FLL interface .. 30
Sample Application ... 31

Appendix D: Using the developer version of the PDF Converter 33
Step by step procedure for using the Amyuni Converters, developer version 34
Frequently encountered problems / asked questions ... 35

Technical Support .. 36

Common Driver Interface .. 37

Introduction ... 39
CDI Properties ... 40
CDI Methods .. 45
Sample VB code using the ActiveX interface ... 50

Sample VB code using the DLL interface .. 51

 4

Legal Information

Information in this document is subject to change without notice and does not represent
a commitment on the part of AMYUNI Consultants. The software described in this
document is provided under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement. It
is against the law to copy the software on any medium except as specifically allowed in
the license or nondisclosure agreement.
The licensee may make one copy of the software for backup purposes. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and retrieval
systems, for any purpose other than the licensee’s personal use, without express written
permission of AMYUNI Consultants.

Copyright 2000, AMYUNI Consultants. All rights reserved.

Adobe, the Adobe logo, Acrobat, the Acrobat logo are trademarks of Adobe Systems
Incorporated.

Microsoft, the Microsoft logo, Microsoft Windows, Microsoft Windows NT and their
logos are trademarks of Microsoft Corporation.

All other trademarks are the property of their respective owners.

Acknowledgments

Special thanks to:

Jean-loup Gailly (jloup@gzip.org)
Mark Adler (madler@alumni.caltech.edu)

for their work on the deflate compression.

This software is also based in part on the work of the Independent JPEG Group and on
parts of the FreeType library.

 5

What’s new in version 1.5

Features:

 Added JPEG and 256-colour compression algorithm
 Option to broadcast messages when PDF documents are generated
 Added the capability to easily add bookmarks to the PDF document
 Improved user interface for both Windows 95/98 and NT
 Added low 75 and 150 DPI resolutions
 Physical margins configurable through user interface or programming
 Ability to set output file name through user interface
 Optimised file sizes with some applications
 Added the ability to insert watermarks on each printed page

Bug fixes:

 Grey-scale option caused problems with 24 bits images under Windows NT
 Character spacing problems with some applications solved
 Concatenation failed with some applications under NT
 Blue screen problems with some applications and large documents
 Image alignment problems caused some images to be completely blurred
 Removed embedding of Arial and Times New Roman fonts
 Removed extraneous ‘>’ sign following image data that caused some PDF

viewers/analysers to fail

For a complete version history, please refer to the Versions.txt file that comes with this
product.

 6

Installation

Before installing and/or using this product, please make sure you carefully read the
copyright notice and agree on all its terms.

The install procedure described here applies to the standard version of the PDF
Converter. For installing and using the developer version, please go to Appendix D at
the end of this document.

Automatic Installation Procedure

An automatic installation procedure has been created to easily install the PDF printer on
your machine. This procedure is only available for Windows 95, 98, NT, 2000 and later
operating systems. For Windows 3.1, refer to the section on manual installation.

If you have received the product by e-mail, copy the file you received in an empty
directory, unzip the file and launch “install.exe”.

If you have received the product by diskette or on CD-ROM, you can launch
“install.exe” directly from the diskette or CD-ROM.

The installation procedure automatically detects your operating system; copies needed
files to your system directory and installs the PDF printer in your system.

A log file named “install.log” is generated in the source directory. If the install
procedure is launched from a read-only media such as CD-ROM, the log file will be
generated in your system’s temporary directory. This file is required by the support staff
to analyse problems that may occur during installation.

Manual Installation Procedure

To manually install the PDF printer into your system, we recommend you to follow the
instructions in your operating system's manual.

The following options should be chosen to have the PDF driver correctly installed:
Output port LPT1: for Windows 95 version, PDF: or FILE: for NT version.
Spooler Off (or direct printing On)

 7

Usage

The PDF Converter works like any standard Windows® printer driver.

The main difference is that instead of directly printing to a printer, it generates a PDF
1.2 compatible file.

The PDF files generated by this driver can be viewed or printed to a physical printer by
the free Adobe® Acrobat® viewer versions 3 or 4, the Amyuni PDF Creator, or by any
other application capable of viewing standard PDF files.

When you use the “Print” option of your application, you will be prompted for the name
of an output file:

Windows NT®

 8

Windows® 3.1, 95 or 98

Just enter any valid file name with .pdf extension. Other extensions can be used but the
generated file will not be automatically recognized by the system as a PDF file.

By default, the file is overwritten if it already exists. To append the document to an
existing file instead of overwriting it, you can check the ‘Concatenate’ button.

The output file name can be set by the application to avoid user interaction by using the
Windows StartDoc escape. Here is a sample C code that can be used to set the output
file name:

DOCINFO di;
di.cbSize = sizeof(DOCINFO);
di.lpszDocName = (LPCTSTR)"My document";
di.lpszOutput = (LPCTSTR)"C:\\TEMP\\TEST.PDF";
StartDoc(hDC, &di);

Setting the output file name using this method disables the concatenation feature under
Windows NT.

 9

Configuration

Information presented here only applies to the standard version of the PDF Converter.
The developer version does not have any user interface; all printer configuration should
be done programmatically as explained in the samples and technical notes. The
information presented here will however help the programmer have a better
understanding of the various printer options made available by the PDF Converter.

The files generated by the PDF printer driver are destined to be printed on any type of
printer on any platform. The configuration settings supported by this driver are kept to a
minimum to be supported by all kind of printers.

The PDF printer properties are configurable using your system control panel or your
application “Print” dialog box. The printer properties are available under “Document
defaults” under Windows NT/2000.

The printer properties are divided into four property pages as follows.

 10

Property Page 1: Configuration

Paper size
This is the default paper size for new documents. All standard paper sizes supported by
Windows are also supported by the PDF Converter. This parameter is usually set by the
client application. The value entered here is only the default for new documents. The
default value for the Paper size is either A4 or Letter depending on the countries where
the product is used.
Resolution
75, 150, 300, 600 or 1200 Dots per inch (DPI). This concerns mainly image resolution.
Text precision can also be improved by increasing this value. The default value is 300
DPI.
Orientation
Portrait or Landscape. This is also a default value used for new documents only.
Applications usually set this parameter internally. The default value is Portrait.
Colour appearance
Colour or Grey-scale. Using grey scale can decrease document size for archival or
transmission purposes. The default value is Colour.

 11

Property Page 2: Advanced Options

Page Content Compression
On or Off. This option enables page compression using the zlib/deflate compression
algorithm. Removing this option can be useful for debugging or for applications that
analyse the generated PDF file. The default value is On.
Font Embedding
On or Off. Setting this option to On will enable the driver to include all True Type®
fonts used by the document in the output PDF file. This results in larger files but
ensures consistent look of the document on any platform. There is no way in the current
version to specify which fonts to include. However, the following fonts are never
included: Arial, Times New Roman, fonts under license. The default value is Off.
Message Broadcasting
On or Off. When activated, messages are broadcasted for all running applications each
time a document is printed to PDF format. The following events result in messages
being broadcasted: Start of document, End of document, Start of page, End of page.
Refer to appendix A for the format of these messages and how to intercept them. The
default value is Off.
Vertical and horizontal margins
Most printers have a minimum physical margin below which they cannot generate any
output. Applications use this value to prevent users from drawing outside the printable
area. The default value is 6 millimetres.

 12

Property Page 3: Image Compression

Image compression algorithm
Three algorithms are handled by the PDF Converter.

Default compression
The default image compression algorithm makes use of colour palettes to reduce the
overall size of 24 bits images. This algorithm works well as long as the number of
colours does not exceed 256.
256-colour compression
The 256-colour compression algorithm calculates the most used 256 colours in an
image and replaces all other colour pixels by their closest match. This lossless
compression algorithm works usually very well with most applications but is relatively
slow on large image with a large number of colours.
JPEG compression
The lossy JPEG compression algorithm produces excellent results with real life true
colour images with a small distortion of the source image. It is not recommended for
graphics than real pictures.

 13

Property Page 4: Destination

Destination type
The only value currently supported is “File system” to indicate that output is to be sent
to a file on disk.

The destination file name can be set up in three different ways:
Prompt for file name:
The user is prompted for an output file name each time a document is printed to the
PDF printer. If a default directory is entered, the File Save dialog box is initialised with
this value. The Default file name is not used.
Document title.pdf
The output file name is set automatically by the PDF Converter by concatenating the
Default directory, the document title and .pdf extension. The document title depends on
every client application. No additional user prompt is needed. The Default file name is
not used.
Predefined by user
The output file name is predefined by the user in the “Default file name” field. The
same file name is used for all generated PDF documents. No additional user prompt is
needed. The Default directory is not used.

 14

Using the interface DLL (PDFIntf.dll standard edition)

Starting from version 1.5, this interface DLL has been superseded by the more
versatile “Common Driver Interface”. This interface remains lighter to implement
and the samples given here still apply.

Starting from version 1.01, an interface DLL (PdfIntf.dll) is installed on the system to
allow more versatile interface to the driver.

This interface can be used from any programming language including VB/VBA.

The following functions are exported by this interface:

SetDefaultDirectory
Sets the default output directory for PDF files.

SetDefaultFileName
Sets the default file name. This should include complete path name and overrides the
default directory set by SetDefaultDirectory.

Set FileNameOptions
Sets various options for generating files. The following options are currently available:

NoPrompt prevents the display of the file name dialog box.
UseFileName use the file name set by SetDefaultFileName as the output file

name. If this option is not set and the NoPrompt option is set,
the file name is constructed from the default directory, the
document title and .pdf extension.

Concatenate concatenate with existing file instead of overwriting. This is
useful only if the NoPrompt option is set.

DisableCompression disable deflate compression of the page’s content.
EmbedFonts enable embedding of fonts used in the source document.
BroadcastMessages send notification messages for PDF generation progress to all

running application.

These options can be combined together using the addition (+) or logical OR operators.
Do not forget to reset the options to none (0), as these will be valid for all applications
using the driver.

 15

VB/VBA declarations
Const NoPrompt As Integer = 1 ' do not prompt for file name
Const UseFileName As Integer = 2 ' use file name set by SetDefaultFileName
else use document name
Const Concatenate As Integer = 4 ' concatenate files, do not overwrite
Const DisableCompression As Integer = 8

' disable page content compression
Const EmbedFonts = 16 ' embed fonts used in the input document
Const BroadcastMessages = 32 ' enable broadcasting of PDF events

Declare Function SetDefaultDirectory Lib "PdfIntf" (ByVal Printer As String,
ByVal Directory As String) As Long
Declare Function SetDefaultFileName Lib "PdfIntf" (ByVal Printer As String,
ByVal FileName As String) As Long
Declare Function SetFileNameOptions Lib "PdfIntf" (ByVal Printer As String,
ByVal Options As Integer) As Long

Sample VB code

Sub PrintToPDF()

 ' set default directory for PDF files
 SetDefaultDirectory "PDF Compatible Printer Driver", "d:\temp"

 ' set default file name
 SetDefaultFileName "PDF Compatible Printer Driver", "d:\temp\d.pdf"

 ' set options
 SetFileNameOptions "PDF Compatible Printer Driver", NoPrompt + UseFileName
+ Concatenate

 ' print (this is to print an Excel Worksheet)
 ActiveWindow.SelectedSheets.PrintOut Copies:=1

 ' reset all options before returning
 SetFileNameOptions "PDF Compatible Printer Driver", 0

End Sub

C++ declarations
#define NoPrompt 1 // do not prompt for file name
#define UseFileName 2 // use file name set by SetDefaultFileName else
use document name
#define Concatenate 4 // concatenate files, do not overwrite
#define DisableCompression 8 // disable page content compression
#define EmbedFonts 16 // embed fonts used in the input document
#define BroadcastMessages 32 // enable broadcasting of PDF events

long SetDefaultDirectory(LPCTSTR Printer, LPCTSTR Directory);
long SetDefaultFileName(LPCTSTR Printer, LPCTSTR FileName);

 16

long SetFileNameOptions(LPCTSTR Printer, short Options);

Sample C/C++ code

typedef long (CALLBACK* SetDefaultDirectoryProc)(LPCTSTR Printer, LPCTSTR
Directory);
typedef long (CALLBACK* SetDefaultFileNameProc)(LPCTSTR Printer, LPCTSTR
FileName);
typedef long (CALLBACK* SetFileNameOptionsProc)(LPCTSTR Printer, short
Options);

SetDefaultDirectoryProc SetDefaultDirectory = NULL;
SetDefaultFileNameProc SetDefaultFileName = NULL;
SetFileNameOptionsProc SetFileNameOptions = NULL;

LPCTSTR szPrinter = _T("PDF Generator");

HINSTANCE hLib = NULL;

BOOL PDFPrint()
{
 // dynamically load the library. This should be done in InitInstance
 hLib = LoadLibrary(_T("pdfintf.dll"));
 if (NULL == hLib)
 {
 return FALSE;
 }

 // get exported functions addresses
 SetDefaultDirectory = (SetDefaultDirectoryProc)GetProcAddress(hLib, _T(
"SetDefaultDirectory"));
 SetDefaultFileName = (SetDefaultFileNameProc)GetProcAddress(hLib, _T(
"SetDefaultFileName"));
 SetFileNameOptions = (SetFileNameOptionsProc)GetProcAddress(hLib, _T(
"SetFileNameOptions"));

 if (NULL == SetDefaultDirectory || NULL == SetDefaultFileName ||
 NULL == SetFileNameOptions
)
 {
 return FALSE;
 }

 // set font embedding option
 (*SetFileNameOptions)(szPrinter, EmbedFonts);

 // get printer DC
 HDC hDC = CreateDC(_T("WINSPOOL"), szPrinter, NULL, NULL);

 if (NULL == hDC)
 {
 return FALSE;

 17

 }

 // start notofication to detect end of file printing
 HANDLE h = FindFirstChangeNotification(_T("c:\\temp"), FALSE,
FILE_NOTIFY_CHANGE_LAST_WRITE);

 // print something
 DOCINFO di;
 di.cbSize = sizeof(DOCINFO);
 di.lpszDocName = _T("My document");
 di.lpszOutput = _T("C:\\TEMP\\TEST.PDF");
 StartDoc(hDC, &di);
 StartPage(hDC);
 TextOut(hDC, 100, 100, _T("My first PDF file"), lstrlen(_T("My
first PDF file")));
 EndPage(hDC);
 EndDoc(hDC);

 DeleteDC(hDC);

 // wait for my file to finish printing
 MsgWaitForMultipleObjects(1, &h, FALSE, INFINITE, 0);
 FindCloseChangeNotification(h);

 FreeLibrary(hLib);

 return TRUE;
}

Delphi declarations
const
 NoPrompt = 1;
 UseFileName = 2;
 Concatenate = 4;
 DisableCompression = 8;
 EmbedFonts = 16;
 BroadcastMessages = 32;

function SetDefaultDirectory(Printer, Directory : PChar) : LONG; stdcall;
external 'pdfintf.dll' name 'SetDefaultDirectory';

function SetDefaultFileName(Printer, FileName : PChar) : LONG; stdcall;
external 'pdfintf.dll' name 'SetDefaultFileName';

function SetFileNameOptions(Printer : PChar; Options : SmallInt) : LONG;
stdcall;
external 'pdfintf.dll' name 'SetFileNameOptions';

 18

Using the interface DLL (PDFIntf.dll developer edition)

Starting from version 1.01, an interface DLL (PdfIntf.dll) is provided with the PDF
Converter to allow more versatile interface to the driver.

This interface has been superseded by the “Common Driver Interface” as
described in the accompanying manual.

This interface can be used from any programming language including VB/VBA.

The following functions are exported by this interface:

PDFDriverInit
Initialize the PDF driver library. The printer name given as parameter should be used as
the name of the printer on which printing should occur. This should be ideally called at
the initialization of the application or at the start of the print function.

PDFDriverInit returns 0 for success. If an error occurs, a Windows system error code is
returned. To get the error message associated with the error code, you can use the Error
Lookup utility or look in the Windows API header files.

PDFDriverEnd
Uninitialize the PDF driver library. This should be ideally called at the end of the
application or at the end of the print function.

SetDefaultDirectory
Sets the default output directory for PDF files.
This function returns 0 when an error occurs.

SetDefaultFileName
Sets the default file name. This should include complete path name and overrides the
default directory set by SetDefaultDirectory.
This function returns 0 when an error occurs.

Set FileNameOptions
Sets various options for generating files. The following options are currently available:

NoPrompt prevents the display of the file name dialog box.

 19

UseFileName use the file name set by SetDefaultFileName as the output file
name. If this option is not set and the NoPrompt option is set,
the file name is constructed from the default directory, the
document title and .pdf extension.

Concatenate concatenate with existing file instead of overwriting. This is
useful only if the NoPrompt option is set.

DisableCompression disable deflate compression of the page’s content.
EmbedFonts enable embedding of fonts used in the source document.
BroadcastMessages send notification messages for PDF generation progress to all

running application.

These options can be combined together using the addition (+) or logical OR operators.
Do not forget to reset the options to none (0), as these will be valid for all applications
using the PDF Converter.

This function returns 0 when an error occurs.

VB/VBA declarations
Const NoPrompt As Integer = 1 ' do not prompt for file name
Const UseFileName As Integer = 2 ' use file name set by SetDefaultFileName
else use document name
Const Concatenate As Integer = 4 ' concatenate files, do not overwrite
Const DisableCompression As Integer = 8

' disable page content compression
Const EmbedFonts = 16 ' embed fonts used in the input document

Declare Function PDFDriverInit Lib "PdfIntf" (ByVal PrinterName As String) As
Long
Declare Function PDFDriverEnd Lib "PdfIntf" () As Long
Declare Function SetDefaultDirectory Lib "PdfIntf" (ByVal Directory As String)
As Long
Declare Function SetDefaultFileName Lib "PdfIntf" (ByVal FileName As String)
As Long
Declare Function SetFileNameOptions Lib "PdfIntf" (ByVal Options As Integer)
As Long

Sample VB code

Sub PrintToPDF()

' initialize the PDF driver
PDFErr = PDFDriverInit("MyPDFPrinter")

If PDFErr Then
 Exit Sub
End If

 20

' set default directory for PDF files
SetDefaultDirectory "d:\temp"

' set default file name
SetDefaultFileName "d:\temp\d.pdf"

' set options
SetFileNameOptions NoPrompt + UseFileName

' print (this is to print an Excel Worksheet)
ActiveWindow.SelectedSheets.PrintOut Copies:=1, ActivePrinter:="MyPDFPrinter"

' reset all options before returning
SetFileNameOptions 0

' Uninitialize the PDF driver
PDFDriverEnd

End Sub

C++ declarations
#define NoPrompt 1 // do not prompt for file name
#define UseFileName 2 // use file name set by SetDefaultFileName else
use document name
#define Concatenate 4 // concatenate files, do not overwrite
#define DisableCompression 8 // disable page content compression
#define EmbedFonts 16// embed fonts used in the input document

long PDFDriverInit(LPCTSTR PrinterName);
long PDFDriverEnd();
long SetDefaultDirectory(LPCTSTR Directory);
long SetDefaultFileName(LPCTSTR FileName);
long SetFileNameOptions(short Options);

Sample C/C++ code

typedef long (CALLBACK* PDFDriverInitProc)(LPCTSTR Printer);
typedef long (CALLBACK* PDFDriverEndProc)();
typedef long (CALLBACK* SetDefaultDirectoryProc)(LPCTSTR Directory);
typedef long (CALLBACK* SetDefaultFileNameProc)(LPCTSTR FileName);
typedef long (CALLBACK* SetFileNameOptionsProc)(short Options);

PDFDriverInitProc PDFDriverInit = NULL;
PDFDriverEndProc PDFDriverEnd = NULL;
SetDefaultDirectoryProc SetDefaultDirectory = NULL;
SetDefaultFileNameProc SetDefaultFileName = NULL;
SetFileNameOptionsProc SetFileNameOptions = NULL;

LPCTSTR szPrinter = _T("PDF Generator");
HINSTANCE hLib = NULL;

 21

BOOL PDFPrint()
{
// dynamically load the library. This should be done in InitInstance
hLib = LoadLibrary(_T("pdfintf.dll"));
if (NULL == hLib)
{
 return FALSE;
}

// get exported functions addresses
PDFDriverInit = (PDFDriverInitProc)GetProcAddress(hLib, _T("PDFDriverInit")
);
PDFDriverEnd = (PDFDriverEndProc)GetProcAddress(hLib,_T("PDFDriverEnd"));
SetDefaultDirectory = (SetDefaultDirectoryProc)GetProcAddress(hLib, _T(
"SetDefaultDirectory"));
SetDefaultFileName = (SetDefaultFileNameProc)GetProcAddress(hLib, _T(
"SetDefaultFileName"));
SetFileNameOptions = (SetFileNameOptionsProc)GetProcAddress(hLib, _T(
"SetFileNameOptions"));

if (NULL == PDFDriverInit || NULL == PDFDriverEnd ||
 NULL == SetDefaultDirectory || NULL == SetDefaultFileName ||
 NULL == SetFileNameOptions)
{
 return FALSE;
}

// init the PDF Printer
DWORD Err;
if (Err = (*PDFDriverInit)(szPrinter))
{
 // system error, exit
 return FALSE;
}

// get printer DC
HDC hDC = CreateDC(_T("WINSPOOL"), szPrinter, NULL, NULL);
if (NULL == hDC)
{
 return FALSE;
}

// start notofication to detect end of file printing
HANDLE h = FindFirstChangeNotification(_T("c:\\temp"), FALSE,
FILE_NOTIFY_CHANGE_LAST_WRITE);

// print something
DOCINFO di;
di.cbSize = sizeof(DOCINFO);
di.lpszDocName = _T("My document");
di.lpszOutput = _T("C:\\TEMP\\TEST.PDF");
StartDoc(hDC, &di);
StartPage(hDC);

 22

TextOut(hDC, 100, 100, _T("My first PDF file"), lstrlen(_T("My first PDF
file")));
EndPage(hDC);
EndDoc(hDC);
DeleteDC(hDC);

// wait for my file to finish printing
MsgWaitForMultipleObjects(1, &h, FALSE, INFINITE, 0);
FindCloseChangeNotification(h);

// exit PDF. This should be done in ExitInstance
(*PDFDriverEnd)();
FreeLibrary(hLib);

return TRUE;
}

Delphi declarations
const
 NoPrompt = 1;
 UseFileName = 2;
 Concatenate = 4;
 DisableCompression = 8 ;
 EmbedFonts = 16 ;

function PDFDriverInit(PrinterName : PChar) : LONG; stdcall;
external 'pdfintf.dll' name 'PDFDriverInit';

function PDFDriverEnd() : LONG; stdcall;
external 'pdfintf.dll' name 'PDFDriverEnd';

function SetDefaultDirectory(Directory : PChar) : LONG; stdcall;
external 'pdfintf.dll' name 'SetDefaultDirectory';

function SetDefaultFileName(FileName : PChar) : LONG; stdcall;
external 'pdfintf.dll' name 'SetDefaultFileName';

function SetFileNameOptions(Options : SmallInt) : LONG; stdcall;
external 'pdfintf.dll' name 'SetFileNameOptions';

 23

Appendix A: PDF Converter events format

When the message broadcast option is set, the PDF Converter broadcasts messages to
all running applications each time one of the following events occur:

Start of document
Start of page
End of page
End of document

Reminder:
Each Windows messages is made of three parts:
A message Id. This is a 32 bits value.
A first parameter known as wParam. This is a 16 bits value under Windows 95/98
(Printer drivers under these systems are 16 bits), and a 32 bits value under Windows
NT/2000.
A second parameter known as lParam. This is a 32 bits value.

The message Id generated by the PDF converter can be retrieved by calling the
Windows API RegisterMessage function:

nPDFDriverMessage = RegisterWindowMessage(“PDF Driver Event”).

This is needed to intercept messages generated by the driver.

For each printer event, belongs an event code which is given in the wParam parameter.
The following event codes are defined by the Windows Device Driver Kit:

// printer driver events
#define DOCUMENTEVENT_STARTDOCPRE 5 // before StartDoc is handled
#define DOCUMENTEVENT_STARTDOCPOST 13 // after StartDoc is handled
#define DOCUMENTEVENT_STARTPAGE 6 // StartPage handled
#define DOCUMENTEVENT_ENDPAGE 7 // EndPage handled
#define DOCUMENTEVENT_ENDDOCPRE 8 // before EndDoc is handled
#define DOCUMENTEVENT_ENDDOCPOST 12 // after EndDoc is handled

// the following can be returned from the event handling function
#define DOCUMENTEVENT_SUCCESS 1
#define DOCUMENTEVENT_UNSUPPORTED 0
#define DOCUMENTEVENT_FAILURE -1

 24

Windows 95/98

lParam Event wParam
LOWORD HIWORD

Before StartDoc is
handled

DOCUMENTEVENT_STARTDOCPRE JobId hDC

After StartDoc is handled DOCUMENTEVENT_STARTDOCPOS
T

JobId hDC

StartPage DOCUMENTEVENT_STARTPAGE JobId hDC
EndPage DOCUMENTEVENT_ENDPAGE JobId hDC
Before EndDoc is
handled

DOCUMENTEVENT_ENDDOCPRE JobId hDC

After EndDoc is handled DOCUMENTEVENT_ENDDOCPOST JobId hDC

Windows NT

Sample message handling function

///
LONG CMessageTestDlg::OnPDFEvent(UINT wParam, LONG lParam)
///
{
// a PDF event has occured
//
 DWORD jobID;
 HDC hDC;
 WORD eventId;

wParam Event
LOWORD HIWORD

lParam

Before StartDoc is
handled

DOCUMENTEVENT_STARTDOCPRE JobId hDC

After StartDoc is
handled

DOCUMENTEVENT_STARTDOCPOST JobId hDC

StartPage DOCUMENTEVENT_STARTPAGE JobId hDC
EndPage DOCUMENTEVENT_ENDPAGE JobId hDC
Before EndDoc is
handled

DOCUMENTEVENT_ENDDOCPRE JobId hDC

After EndDoc is handled DOCUMENTEVENT_ENDDOCPOST JobId hDC

 25

 // get event ID
 eventId = LOWORD(wParam);

 if (m_bNT)
 { // Windows NT
 jobId = HIWORD(wParam);
 hDC = lParam;
 }
 else
 { // Windows 95/98
 jobId = LOWORD(lParam);
 hDC = HIWORD(lParam);
 }

 switch (eventId)
 {
 case DOCUMENTEVENT_STARTDOCPRE: // before StartDoc is handled
 m_log.AddString("StartDoc called but not handled yet by the
driver");
 break;
 case DOCUMENTEVENT_STARTDOCPOST: // after StartDoc is handled
 m_log.AddString("StartDoc called and handled by the driver");
 break;
 case DOCUMENTEVENT_STARTPAGE: // StartPage handled
 m_log.AddString("StartPage called and handled");
 break;
 case DOCUMENTEVENT_ENDPAGE: // EndPage handled
 m_log.AddString("EndPage called and handled");
 break;
 case DOCUMENTEVENT_ENDDOCPRE: // before EndDoc is handled
 m_log.AddString("EndDoc called but not handled yet");
 break;
 case DOCUMENTEVENT_ENDDOCPOST: // after EndDoc is handled
 m_log.AddString("EndDoc called and handled");
 break;
 default:
 return DOCUMENTEVENT_UNSUPPORTED;
 }
 return DOCUMENTEVENT_SUCCESS;
}

 26

Appendix B: Adding bookmarks to the PDF document

Version 1.5 of the PDF Converter, added the ability to easily include bookmarks in the
resulting PDF document while it is being generated.

Bookmarks can be added programmatically, either by using Windows Escape function,
or the SetBookmark CDI (“Common Driver Interface”) function.

The following function which is implemented in the “Common Driver Interface” allows
embedding of bookmarks:

///
long WINAPI SetBookmark(HDC hDC, long lParent, LPCTSTR szTitle)
///
{
// MAKE SURE COMPILER STRUCT ALIGNEMENT IS SET TO 1 OR 2.
//
 struct
 {
 long lParent;
 char szTitle[255];
 } Bookmark;

 Bookmark.lParent = lParent;
 lstrcpyn(Bookmark.szTitle, szTitle, 254);

 return ExtEscape(hDC, 250, sizeof(DWORD) + lstrlen(Bookmark.szTitle
) + 1,
(LPCSTR)&Bookmark, 0, NULL);
}

The bookmark will be inserted at the location where the last text drawing operation
occurred. Example: if you draw text in the middle of page 3 of your document and call
SetBookmark immediately after, the bookmark will point to the middle of page 3 of the
PDF document.

PDF bookmarks are structured in a tree. The root has an id of 0. This is where the
lParent parameter is used. Each time you insert a bookmark, the ExtEscape function
returns the bookmark ID which can be used to insert other bookmarks as children.

 27

VB sample for inserting bookmarks

Public pdf As New CDIntf.CDIntf

Private Sub Form_Load()

 ' initialize PDF printer and set it as default
 pdf.DriverInit "PDF Compatible Printer Driver"
 pdf.SetDefaultPrinter

 ' draw some text
 Printer.CurrentX = 200
 Printer.CurrentY = 400
 Printer.Print "Bookmark 1"
 ' set a bookmark on page 1
 pdf.SetBookmark Printer.hDC, 0, "Bookmark 1"

 ' go to next page
 Printer.NewPage

 ' draw some text and set a new bookmark
 Printer.CurrentX = 100
 Printer.CurrentY = 100
 Printer.Print "Bookmark 2"
 Parent = pdf.SetBookmark(Printer.hDC, 0, "Bookmark 2")

 ' set a bookmark as child of another bookmark
 Printer.CurrentX = 100
 Printer.CurrentY = 800
 Printer.Print "Submark 2-1"
 pdf.SetBookmark Printer.hDC, Parent, "Submark 2-1"

 Printer.EndDoc

 pdf.DriverEnd

End Sub

 28

Appendix C: Using the Amyuni Printer Drivers with Visual FoxPro 6

Objective:
To provide Visual FoxPro users with technical information to interface with the
Amyuni series of printer drivers.

The full technical note is available from http://www.amyuni.com/support.htm. Along
with this note, you will find: the FLL interface for Visual FoxPro (FLLINTF.FLL) and
a sample FoxPro application.

This information applies to:
Microsoft Visual FoxPro versions 5 and 6
Amyuni PDF Converter / Printer Driver
Amyuni DHTML Converter / Printer Driver
Amyuni RTF Converter / Printer Driver
Amyuni EMF Converter / Printer Driver

To facilitate the use of the Amyuni Printer Drivers with VFP, two interface DLLs have
been developed and made available through www.amyuni.com:
CDINTF.DLL (or “Common Driver Interface” DLL) contains two types of interfaces:
DLL and ActiveX
FLLINTF.FLL contains a specific VFP extension library interface. This FLL does not
work alone but with conjunction of CDINTF.DLL.

The Amyuni converters behave like standard printers that are installed in the printers’
folder in one of two ways:
For the standard version of the converters, the printers are installed using the supplied
“install.exe” utility and remain in the printers’ folder.
For the developer version of the same products, the printers are installed
programmatically at the start of the application, and removed before exiting.

The VFP application programmer can choose between three interfacing methods:
The ActiveX interface that is also provided by CDINTF.DLL
The FLL interface that is provided by FLLINTF.DLL
The DLL interface that is provided by CDINTF.DLL

All three interfaces provide similar services. The FLL interface is however not complete
and only the services not available through standard FoxPro programming are
implemented in the FLL. To know which functions are available through the VFP

 29

interface, please look at each function’s documentation in the “Common Driver
Interface” manual

The use of the DLL interface is not recommended for VFP users, as it adds complexity
and no real benefits to the programmer.

Prior to reading this note, the user should be familiar with the CDI functions by going
through its documentation.

Using the ActiveX interface from within FoxPro

Prior to using the ActiveX interface, the DLL should be registered in the system by
executing:
 REGSVR32 CDINTF.DLL
from the location where the DLL has been installed.

NOTE: bookmarks cannot be added to PDF files when using the ActiveX or DLL
interfaces. They are only available through the FLL interface. However, nothing
prevents developers form using both interfaces at the same time.

The ActiveX object needs to be created first with the CreateObject FoxPro function:
Pdf = CreateObject("CDINTF.CDINTF")

The printer can now be initialised using one of the following functions:
Pdf.DriverInit(PrinterName) && for the standard versions
PrinterName should be the name of the printer as it appears in the Printers
folder
Or
Pdf.PDFDriverInit(NewPrinterName) && this will add a new printer to the
printers folder, to be used with the developer’s versions

Initialisation should be done as early as possible within the main application.

To modify printer settings, you can change one or more of the ActiveX properties. For
ex, to set the resolution to 600 DPI:
Pdf.Resolution = 600

The modified parameters will not be in effect unless SetDefaultConfig is called. This
notifies FoxPro of the change in printer properties:
Pdf.SetDefaultConfig

 30

Setting the output file name and options can be done using:
Pdf.FileNameOptions = 1 + 2 && no prompt + use file name
Pdf.DefaultFileName = "test.pdf" && set output file name

* printing can be done here
SET PRINTER TO NAME "PDF Compatible Printer Driver"
REPORT FORM authors.frx NOEJECT NOCONSOLE TO PRINTER

Before exiting the application, allocated memory has to freed and the printer removed
(in the case of the developer versions) by calling:
Pdf.DriverEnd

Using the FLL interface

Prior to using the FLL interface, the FLL should be registered in FoxPro by executing:
SET LIBRARY TO FLLINTF.FLL ADDITIVE

The printer can be initialised using one of the following functions:
DriverInit(PrinterName) && for the standard versions,
PrinterName should be the name of the printer as it appears in the Printers
folder
Or
Pdf.PDFDriverInit(NewPrinterName) && this will add a new printer to the
printers folder, to be used with the developer’s versions

Initialisation should be done as early as possible within the main application.

Setting the output file name and options can be done using:
FileNameOptions(1 + 2 + 32) && no prompt + use file name + broadcast
DefaultFileName("test.pdf") && set output file name

* Printing can be done here
SET PRINTER TO NAME "PDF Compatible Printer Driver"
REPORT FORM authors.frx NOEJECT NOCONSOLE TO PRINTER

To add bookmarks to PDF files requires some specific handling as compared to other
applications. Bookmarks can only be added while a report is printed and this requires a
handle to a Printer Device Context that is readily available from most applications but is
hidden in VFP. To overcome this problem, the FLL installs a hook to read the Device
Context of the job being printed. This is why the “Broadcast Messages” option should
be on to enable bookmarks.

To insert a bookmark at the current print location, call:

 31

SetBookmark(Parent, Title)

This call can be placed in a user defined function that can be called from within reports:
* Adds a bookmark to the report at the current print location
function AddBookmark
PARAMETERS PageNo
=SetBookmark(0, "Test" + Str(PageNo))
return ""

Before exiting the application, allocated memory has to freed and the printer removed
(in the case of the developer versions) by calling:
DriverEnd

Sample Application

The sample application provided with this note demonstrates the use of the ActiveX and
FLL interfaces. It is made up of a simple project, one report named Authors, one
database named Books with one Authors database. It also contains FLLINTF.FLL and
CDINTF.DLL and this technical note.

The “vfptest.prg” program initialises the FLL and the PDF or HTML printer, prints the
Authors report while inserting bookmarks for each page of the report.

You will note that to generate bookmarks, a hidden field is inserted in the page header.
The purpose of this field is to call the SetBookmark function for each page.

Here is a listing of vfptest.prg:

* the FLL should be in the application directory along with CDINTF.DLL
* load the interface FLL
set default to "c:\vfptest" && modifiy this line to point to the real
application location
set library to "FllIntf.fll" ADDITIVE

On ERROR DO errhand;

PDF = DriverInit("PDF Compatible Printer Driver") && for the
standard version
&&PDF = PDFDriverInit("My PDF Printer") && for the developer version
&&HTML = HTMLDriverInit("My HTML Printer")&& for the HTML driver

DefaultFileName(PDF, "c:\test.pdf") && set output file name
FileNameOptions(PDF, 1 + 2 + 32) && no prompt + use file name +
broadcast messages
*

 32

* Note: in order to insert bookmarks from VFP, message broadcasting should be
enbaled
On ERROR && restore system error handler

set printer to name "PDF Compatible Printer Driver"

REPORT FORM authors.frx NOEJECT NOCONSOLE TO PRINTER

DriverEnd(PDF) && for the developer versions: remove the PDF or HTML
printer, otherwise only clears some memory

set library to

return

* adds a bookmark to the report at the current print location
function AddBookmark
PARAMETERS PageNo
=SetBookmark(0, "Test" + Str(PageNo))
return ""

* error handling: displays last error message
Procedure errhand
Clear
? 'Error message: ' + LASTERRORMSG()
cancel

 33

Appendix D: Using the developer version of the PDF Converter

Objective:
To help developers integrate the developer versions of the Amyuni Converters inside
their applications.

You can find the full technical note by visiting http://www.amyuni.com/support.htm.
Along with this note, you will find: the install utility for the PDF Converter that may be
needed under some circumstances.

The developer version of the Amyuni Converters is a special version of these products
that can be distributed with the licensees’ applications without paying any additional
royalties to Amyuni Consultants.

By special version, we mean a version that:
does not need to be pre-installed on the client system (no install utility)
does not have any properties dialog box
does not have any “File Save As” dialog box

The reference manual for the developer versions is the “Developer’s manual” provided
with each product. The user’s manual also provided helps understand the overall
operation of the products. The dialog boxes that are shown in this manual are not
available in the developer version.

All printer configuration, file destination and options settings should be done
programmatically by the main application.

The “Common Driver Interface” (CDINTF.DLL) provided with each of the mentioned
products, is a DLL that contains both a standard DLL and an ActiveX interface to easily
configure the printers.

 34

Step by step procedure for using the Amyuni Converters, developer version

Step 1 – Copy all distributable files to the application’s main directory
The application’s main directory is usually where the executable file is located. The list
of distributable files is given in the developer manual of each product.

Step 2 – Register the CDIntf ActiveX
If you are using the ActiveX interface, you need to register the ActiveX by calling:
REGSVR32 CDINTF.DLL, from the directory where you copied the printer DLLs. You
can use CDIntf through the DLL convention without the need for registering or creating
ActiveXs.

Step 3 – Initialise the printer at start-up of your application
An application needs to initialise the printer when it is launched. To initialise the
printer, you need to call PDFDriverInit, HTMLDriverInit, RTFDriverInit or
EMFDriverInit depending on which product you are using. Each of these functions take
as parameter the name of the printer that will be added to the printers folder as long as
the application is running. Ex: PDFDriverInit(“MyCompany PDF Export”) will add a
printer named “MyCompany PDF Export” to the list of printers available in the system.
To avoid problems, use a name that is likely to be unique on the system where your
application is running. Adding your company’s name or your application’s name or
both to the printer name will help ensure this.

Step 4 – Export to the format of your choice by printing from your application
When the user chooses the export function of your application to generate a PDF,
HTML, RTF or EMF file, you need to set up the output file name using
SetDefaultFileName, the file generation options SetFileNameOptions(NoPrompt +
UseFileName + …) and print to the “MyCompany PDF Export” as you would do when
printing to any other printer.

Step 5 – Restore the printer to its previous setting
When printing is over, you need to call SetFileNameOptions(0) to prevent other
applications or users from overwriting the file that has just been generated from your
application.

Step 6 – Remove the printer before exiting
Before exiting the application, call DriverEnd to remove the printer from the list of
available printers.

 35

Frequently encountered problems / asked questions

Q – My application is deployed on NT/2000 systems where users do not have
permission to add / remove a printer. How can I use these products under this
configuration ?

A – To use the Amyuni Converters in situations where users do not have enough rights
to add or remove a printer, the printer needs to be installed in these systems by an
administrator at the same time as the application is installed or at some later stage. To
install the printer, you can use one of two methods:
In your application’s install procedure, call PDFDriverInit(“MyCompany PDF Export”
) or any other xxxDriverInit function. If you are using the ActiveX interface, the printer
will be removed as soon as you exit the install application, to avoid this call DriverInit(
“MyCompany PDF Export”) immediately after PDFDriverInit(“MyCompany PDF
Export”).
Use the attached install utility while logged in as an administrator. This applies only to
the PDF Converter, for other formats please contact support@amyuni.com. You can
specify a printer name by using (install “MyCompany PDF Export”). You can also
avoid the display of any dialog box by activating silent mode with the /s switch.
Your application’s code does not need to be changed under this situation.

Q – When frequently using one the Converter products, the DriverInit function fails or
succeeds but printing fails. This happens randomly with no apparent reason.

A – This problem usually occurs when xxxDriverInit / DriverEnd are called each time a
document is converted. It is very important that these functions be called once at
application initialization (for xxxDriverInit) and once before exiting (for DriverEnd)

Q – What is the difference between the DriverInit function and one of the xxxDriverInit
functions ?

A – The DriverInit function only attaches to an existing printer. If the specified printer
does not exist, it is not created and the function fails. The xxxDriverInit functions attach
to the printer if it already exists, otherwise they attempt to create it. In both cases,
xxxDriverInit functions cause the printer to be removed when DriverEnd is called.,
whereas DriverInit leaves the printer in the system.

 36

Technical Support

You can obtain technical support on our web site by visiting the following page:

http://www.amyuni.com/support.htm

Before contacting technical support, please take a look at the technical notes for answers
to common questions.

You need to be a registered user of our products to obtain technical support.

To be able to service you in an effective manner, include when possible the original
document where the problem occurred and the PDF file generated by our driver.

 37

Common Driver Interface
Version 1.02

Developer’s Manual

AMYUNI Consultants
www.amyuni.com

 38

Contents

Introduction ... 39
CDI Properties ... 40

PaperSize ... 40
PaperWidth / PaperLength... 40
Orientation .. 41
Resolution.. 41
HorizontalMargin / VerticalMargin ... 41
FontEmbedding... 42
Compression.. 42
JPEGCompression .. 42
HTMLUseLayers .. 43
HTMLMultiplePages .. 43
DefaultDirectory ... 43
DefaultFileName ... 44
FileNameOptions... 44

CDI Methods .. 45
DriverInit(PrinterName) .. 45
PDFDriverInit(PrinterName) ... 45
HTMLDriverInit(PrinterName)... 46
EMFDriverInit(PrinterName) .. 46
DriverEnd.. 47
CDICreateDC.. 47
SetDefaultConfig ... 47
SetDefaultPrinter .. 48
RestoreDefaultPrinter... 48
GetLastErrorMsg.. 48
SetBookmark(hDC, Parent, Title) .. 48
SetWatermark(Watermark, FontName, FontSize, Orientation, Colour, HorzPos,
VertPos, Foreground) ... 49

Sample VB code using the ActiveX interface ... 50

Sample VB code using the DLL interface .. 51

 39

Introduction

The « Common Driver Interface » (CDI) has been developed to make easier the
common configuration tasks for printers and printer drivers.

It is currently available with the following products :

- Amyuni PDF Converter / PDF Compatible Printer Driver
- Amyuni DHTML Converter / Dynamic HTML Printer Driver
- Amyuni EMF Converter / EMF Printer Driver
- Amyuni RTF Converter / RTF Printer Driver

When used with one the previously mentioned products, the user should first familiarize
with each product’s operation by going through the user’s or developer’s manual.

This interface resides in a DLL named CDINTF.DLL, which has two calling
conventions :
- A standard DLL calling convention
- An ActiveX calling convention

Users wishing to use this interface as an ActiveX from any ActiveX aware application
should register the DLL in the system by calling:

Regsvr32 CDINTF.DLL
from the location where this DLL is installed.

 40

CDI Properties

PaperSize
Type : short integer
Description : set or retrieve the paper size for all documents
DLL calls : long SetPaperSize(HANDLE hPrinter, long PaperSize)
 : long GetPaperSize(HANDLE hPrinter)
FLL calls : SetPaperSize(Printer, PaperSize)
 : paperSize = GetPaperSize(Printer)

Possible values for this property are predefined by Windows. Some common paper size
values :

Paper Size PaperSize value
Letter 8 1/2 x 11 in 1
Legal 8 1/2 x 14 in 5
A4 210 x 297 mm 9
A3 297 x 420 mm 8
Custom size 256

Note :
The hPrinter handle passed as a first parameter to the DLL functions, is the handle
returned by a call to one of the DriverInit, PDFDriverInit, HTMLDriverInit,
EMFDriverInit or RTFDriverInit calls.

PaperWidth / PaperLength
Type : long integer
Description : set or retreive custom paper size
DLL calls : long SetPaperLength(HANDLE hPrinter, long PaperLength)
 : long GetPaperLength(HANDLE hPrinter)
 : long SetPaperWidth(HANDLE hPrinter, long PaperWidth)
 : long GetPaperWidth(HANDLE hPrinter)
FLL calls : Not available

The unit value of these property is one thenth of a millimeter (mm/10). These properties
are set to zero for all standard paper sizes. When one of these properties is changed, the
PaperSize property automatically switches to 256 (Custom Size).

 41

Orientation
Type : short integer
Description : set or retreive default paper orientation
DLL calls : long SetOrientation(HANDLE hPrinter, short Orientation)
 : long GetOrientation(HANDLE hPrinter)
FLL calls : Not available

Possible values of this property are:

Paper Orientation Orientation value
Portrait 1
Landscape 2

Resolution
Type : long integer
Description : set or retreive default image resolution
DLL calls : long SetResolution(HANDLE hPrinter, long Resolution)
 : long GetResolution(HANDLE hPrinter)
FLL calls : Not available

Possible values of this property are:

Image Resolution Resolution value
75 dots per inch 75
150 dots per inch 150
300 dots per inch 300
600 dots per inch 600
1200 dots per inch 1200

HorizontalMargin / VerticalMargin
Type : long integer
Description : set or retrieve default physical margins
DLL calls : long SetHorizontalMargin(HANDLE hPrinter, long Margin)
 : long GetHorizontalMargin(HANDLE hPrinter)

 42

 : long SetVerticalMargin(HANDLE hPrinter, long Margin)
 : long GetVerticalMargin(HANDLE hPrinter)
FLL calls : Not available

The unit value of these property is one thenth of a millimeter (mm/10). The default
values for these properties is 60 (6mm), which is on average the lowest physical margin
most printers can handle.

FontEmbedding
Type : boolean
Description : set or retreive font embedding option
DLL calls : long SetFontEmbedding(HANDLE hPrinter, long FontEmbedding)
 : long GetFontEmedding(HANDLE hPrinter)
FLL calls : Not available

Note :
This property is only available for the Amyuni PDF Converter / PDF Compatible
Printer Driver

Compression
Type : boolean
Description : set or retreive page content compression option
DLL calls : long SetCompression(HANDLE hPrinter, long Compression)
 : long GetCompression(HANDLE hPrinter)
FLL calls : Not available

Note :
This property is only available for the PDF Compatible Printer Driver

JPEGCompression
Type : boolean
Description : set or retreive JPEG compression of 24 bit images option
DLL calls : long SetJPEGCompression(HANDLE hPrinter, long Compression)
 : long GetJPEGCompression(HANDLE hPrinter)
FLL calls : Not available

Note :

 43

This property is only available for the Dynamic HTML Printer Driver and the PDF
Compatible Printer Driver.

HTMLUseLayers
Type : boolean
Description : when set, create one HTML document with layers for multi-page
documents
DLL calls : long SetHTMLUseLayers(HANDLE hPrinter, long UseLayers)
 : long GetHTMLUseLayers (HANDLE hPrinter)
FLL calls : Not available

Note :
This property is only available for the Dynamic HTML Printer Driver

HTMLMultiplePages
Type : boolean
Description : when set, create multiple HTML files for multi-page documents
DLL calls : long SetHTMLMultiplePages(HANDLE hPrinter, long MultiHTML)
 : long GetHTMLMultiplePages (HANDLE hPrinter)
FLL calls : Not available

Note :
This property is only available for the Dynamic HTML Printer Driver

The HTMLUseLayers overrides the setting for this property. When both properties are
cleared (= FALSE), only one HTML file is generated with all pages appended one after
the other.

DefaultDirectory
Type : string
Description : set or retreive default directory for output files
DLL calls : long SetDefaultDirectory(HANDLE hPrinter, LPTSTR szDir)
 : Get function not available
FLL calls : DefaultDirectory(Printer, Directory)
 : Get function not available

 44

DefaultFileName
Type : string
Description : set or retreive default file name for output files
DLL calls : long SetDefaultFileName(HANDLE hPrinter, LPTSTR szFileName)
 : Get function not available
FLL calls : DefaultFileName(Printer, FileName)
 : Get function not available

Note :
For the Dynamic HTML Printer Driver, this is the name of the first file to be generated.
Other HTML files will be suffixed by the page number, and images will be suffixed by
image number and .bmp or .jpg extension.

FileNameOptions
Type : short integer
Description : set or retreive file name options
DLL calls : long SetFileNameOptions(HANDLE hPrinter, int nOptions)
 : Get function not available
FLL calls : FileNameOptions(Printer, Options)
 : Get function not available

The options depend on the printer driver being used. Please refer to each driver user’s or
developer’s manual for possible values.

 45

CDI Methods

DriverInit(PrinterName)
Return type : long
Description : Initializes the library for use with any printer
DLL call : HANDLE DriverInit(LPTSTR szPrinter)
FLL call : Printer = DriverInit(PrinterName)

The return value of this function is an internal data handle that is to be passed as a first
parameter to all other functions. In the case of the ActiveX interface, this handle is not
used.

A return value of 0, indicates that an error occured. You can use the GetLastError
Windows API to get the error code, or the GetLastErrorMsg CDI call to convert the
error code to an error message.

The PrinterName parameter should be the name of the printer as it appears in printers
control panel.

Note :
This function should be used with the standard versions of the above mentioned
products or with any other printer driver. Developers using the special versions of the
drivers should use PDFDriverInit, HTMLDriverInit, EMFDriverInit or RtfDriverInit.

PDFDriverInit(PrinterName)
Return type : long
Description : Initializes the PDF printer
DLL call : HANDLE PDFDriverInit(LPTSTR szPrinter)
FLL call : Printer = PDFDriverInit(PrinterName)

The return value of this function is an internal data handle that is to be passed as a first
parameter to all other functions. In the case of the ActiveX interface, this handle is not
used.

A return value of 0, indicates that an error occured. You can use the GetLastError
Windows API to get the error code, or the GetLastErrorMsg CDI call to convert the
error code to an error message.

 46

Note :
This function is only available for developers who have licensed the “PDF Compatible
Printer Driver”. Developers using the standard version of this driver should use
DriverInit instead.

HTMLDriverInit(PrinterName)
Return type : long
Description : Initializes the HTML printer
DLL call : HANDLE HTMLDriverInit(LPTSTR szPrinter)
FLL call : Printer = HTMLDriverInit(PrinterName)

The return value of this function is an internal data handle that is to be passed as a first
parameter to all other functions. In the case of the ActiveX interface, this handle is not
used.

A return value of 0, indicates that an error occured. You can use the GetLastError
Windows API to get the error code, or the GetLastErrorMsg CDI call to convert the
error code to an error message.

This function is only available for developers who have licensed the “Dynamic HTML
Printer Driver”. Developers using the standard version of this driver should use
DriverInit instead.

EMFDriverInit(PrinterName)
Return type : long
Description : Initializes the EMF printer
DLL call : HANDLE EMFDriverInit(LPTSTR szPrinter)
FLL call : Printer = HTMLDriverInit(PrinterName)

The return value of this function is an internal data handle that is to be passed as a first
parameter to all other functions. In the case of the ActiveX interface, this handle is not
used.

A return value of 0, indicates that an error occured. You can use the GetLastError
Windows API to get the error code, or the GetLastErrorMsg CDI call to convert the
error code to an error message.

 47

This function is only available for developers who have licensed the “EMF Printer
Driver”. Developers using the standard version of this driver should use DriverInit
instead.

DriverEnd
Return type : none
Description : uninstalls the printer installed by one of the DriveInit methods
DLL call : void DriverEnd(HANDLE hPrinter)
FLL call : DriverEnd(Printer)

This method should be called before exiting the main application.

If SetDefaultPrinter has been called to change the Windows default printer, the previous
default printer is restored when this function is called.

CDICreateDC
Return type : Handle to a Printer Device Context
Description : returns a DC associated to the printer and takes into account the

parameters as set
: by calls to the CDI properties or methods

DLL call : HDC CreateDC(HANDLE hPrinter)
FLL call : Not available

This is only a wrapper to the CreateDC Windows API.

SetDefaultConfig
Return type : boolean
Description : sets the printer parameters as defined by previous calls the the CDI as
default
 : for all applications
DLL call : long SetDefaultConfig(HANDLE hPrinter)
FLL call : SetDefaultConfig(Printer)

You should use this function if you need your settings to be taken as default values by
all applications. Otherwise, these settings will be true only for Device Contexts returned
by the CreateDC function.

 48

SetDefaultPrinter
Return type : boolean
Description : sets the current printer as the default printer for all applications
DLL call : long SetDefaultPrinter(HANDLE hPrinter)
FLL call : SetDefaultPrinter(Printer)

To make sure the previous default printer is not restored when calling DriverEnd or
when the ActiveX object is destroyed, you can call this function twice.

RestoreDefaultPrinter
Return type : boolean
Description : restores the default printer to its value before the call to
SetDefaultPrinter
DLL call : long RestoreDefaultPrinter(HANDLE hPrinter)
FLL call : RestoreDefaultPrinter (Printer)

This function is called automatically when PDFDriverInit is called.

GetLastErrorMsg
Return type : string
Description : gets the error message associated with the last error code
DLL call : void GetLastErrorMsg(LPTSTR Msg, long MaxMsg)
FLL call : message = LastErrorMsg()

This function can be called after a call to one of the DriverInit functions to get the
system error message.

SetBookmark(hDC, Parent, Title)
Return type : long
Description : puts a bookmark at the current printing location
DLL call : long SetBookmark(long hDC, long lParent, LPCTSTR szTitle)
FLL call : Parent = SetBookmark(Parent, Title)

This function can be used with the PDF Printer Driver only. As bookmarks can be
organized in a tree, this function returns the ID of the inserted bookmark, this ID can be
used to insert bookmarks beneath another one.

 49

SetWatermark(Watermark, FontName, FontSize, Orientation, Colour, HorzPos,
VertPos, Foreground)
Return type : long
Description : adds a watermark to every page of a PDF document
DLL call : long SetWatermark(HANDLE hIntf, LPTSTR szWatermark, LPTSTR
szFont, short fontSize, short Orientation, COLORREF colour, LONG xPos, LONG
yPos, BOOL bForeground)
FLL call : Not available
Parameters : Watermark text to print on each page
 : FontName font to be used to print text
 : FontSize font size in 0.1 inch units
 : Orientation watermark text orientation in 0.1 degree units
 : Colour watermark colour
 : HorzPos horizontal position of text in 0.1 inch units
 : VertPos vertical position of text in 0.1 inch units
 : Foreground flag that indicates whether the watermark should be above

or below the page content

This function can be used with the PDF Printer Driver only.

 50

Sample VB code using the ActiveX interface

This is a sample VBA macro that allows you to convert an Excel worksheet to a PDF
file without user interaction.

Const NoPrompt As Integer = 1 ' do not prompt for file name
Const UseFileName As Integer = 2 ' use file name set by SetDefaultFileName
else use document name
Const Concatenate As Integer = 4 ' concatenate files, do not overwrite
Const DisableCompression As Integer = 8

' disable page content compression
Const EmbedFonts = 16 ' embed fonts used in the input document
Const BroadcastMessages = 32 ' enable broadcasting of PDF events

Sub PrintToPDF()

Dim PDFPrinter As New CDIntf.CDIntf

' this adds a new printer named MyPDFPrinter
PDFPrinter.PDFDriverInit "MyPDFPrinter"

' this attaches the CDIntf object to an existing printer
' it will fail if the printer does not already exist
'PDFPrinter.PDFDriverInit "PDF Compatible Printer Driver"

PDFPrinter.PaperSize = 1 ' set paper size to letter
PDFPrinter.Orientation = 2 ' landscape

PDFPrinter.SetDefaultConfig

' set default configuration for all applications
PDFPrinter.SetDefaultPrinter

' set printer as default

' set default directory for PDF files
PDFPrinter.DefaultDirectory = "d:\temp"

' set default file name
PDFPrinter.DefaultFileName = "d:\temp\test.pdf"

' set options
PDFPrinter.FileNameOptions = NoPrompt + UseFileName

' print (this line should be changed according to the target application)
ActiveWindow.SelectedSheets.PrintOut Copies:=1, ActivePrinter:="MyPDFPrinter"

' reset all options before returning
PDFPrinter.FileNameOptions = 0

Set PDFPrinter = Nothing ' also removes the PDF printer

 51

End Sub

Sample VB code using the DLL interface

Here is some sample VB code that uses the DLL interface of CDINTF to access the
PDF Converter.

' under VB, these should be in a separate module
Declare Function DriverInit Lib "CDIntf" (ByVal Printer As String) As Long
Declare Function PDFDriverInit Lib "CDIntf" (ByVal Printer As String) As Long
Declare Sub DriverEnd Lib "CDIntf" (ByVal hPrinter As Long)

Declare Function SetDefaultDirectory Lib "CDIntf" (ByVal hPrinter As Long,
ByVal Directory As String) As Long
Declare Function SetDefaultFileName Lib "CDIntf" (ByVal hPrinter As Long,
ByVal FileName As String) As Long
Declare Function SetFileNameOptions Lib "CDIntf" (ByVal hPrinter As Long,
ByVal Options As Integer) As Long

Declare Function SetResolution Lib "CDIntf" (ByVal hPrinter As Long, ByVal
Resolution As Long) As Long
Declare Function GetResolution Lib "CDIntf" (ByVal hPrinter As Long) As Long

Declare Function SetBookmark Lib "CDIntf" (ByVal hDC As Long, ByVal Parent As
Long, ByVal Title As String) As Long

Declare Function SetDefaultConfig Lib "CDIntf" (ByVal hPrinter As Long) As
Long
Declare Function SetDefaultPrinter Lib "CDIntf" (ByVal hPrinter As Long) As
Long

Const NoPrompt As Integer = 1 ' do not prompt for file name
Const UseFileName As Integer = 2 ' use file name set by SetDefaultFileName
else use document name
Const Concatenate As Integer = 4 ' concatenate files, do not overwrite
Const DisableCompression As Integer = 8

' disable page content compression
Const EmbedFonts = 16 ' embed fonts used in the input document
Const BroadcastMessages = 32 ' enable broadcasting of PDF events

Private Sub PrintToPDF_Click()

 ' initialize PDF printer and set it as default
 ' this is for the standard version
 pdf = DriverInit("PDF Compatible Printer Driver")

 52

 ' this adds a printer named My PDF Printer
 ' pdf = PDFDriverInit("My PDF Printer")

 If pdf = 0 Then
 MsgBox "Cannot initialize PDF printer"
 Exit Sub
 End If

 SetResolution pdf, 600
 SetDefaultConfig pdf ' set 600 DPI as default for all printouts

 SetDefaultPrinter pdf ' set this printer as default

 SetDefaultFileName pdf, "c:\test.pdf"
 SetFileNameOptions pdf, NoPrompt + UseFileName

 ' Print something here

 ' draw some text
 Printer.CurrentX = 200
 Printer.CurrentY = 400
 Printer.Print "Bookmark 1"
 ' set a bookmark on page 1
 SetBookmark Printer.hDC, 0, "Bookmark 1"

 ' go to next page
 Printer.NewPage

 ' draw some text and set a new bookmark
 Printer.CurrentX = 100
 Printer.CurrentY = 100
 Printer.Print "Bookmark 2"
 Parent = SetBookmark(Printer.hDC, 0, "Bookmark 2")

 ' set a bookmark as child of another bookmark
 Printer.CurrentX = 100
 Printer.CurrentY = 800
 Printer.Print "Submark 2-1"
 SetBookmark Printer.hDC, Parent, "Submark 2-1"

 Printer.EndDoc

 ' this will remove the printer if it had been installed with PDFDriverEnd
 ' will also restore default printer
 DriverEnd pdf
End Sub

